Recursive partitioning and multi-scale modeling on conditional densities
نویسندگان
چکیده
منابع مشابه
Recursive partitioning and multi-scale modeling on conditional densities
Abstract: We introduce a nonparametric prior on the conditional distribution of a (univariate or multivariate) response given a set of predictors. The prior is constructed in the form of a two-stage generative procedure, which in the first stage recursively partitions the predictor space, and then in the second stage generates the conditional distribution by a multi-scale nonparametric density ...
متن کاملRecursive partitioning and Bayesian inference on conditional distributions
In this work we introduce a Bayesian framework for nonparametric inference on conditional distributions in the form of a prior called the conditional optional Pólya tree. The prior is constructed based on a two-stage nested procedure, which in the first stage recursively partitions the predictor space, and then in the second generates the conditional distribution on those predictor blocks using...
متن کاملUnbiased Recursive Partitioning: A Conditional Inference Framework
Recursive binary partitioning is a popular tool for regression analysis. Two fundamental problems of exhaustive search procedures usually applied to fit such models have been known for a long time: Overfitting and a selection bias towards covariates with many possible splits or missing values. While pruning procedures are able to solve the overfitting problem, the variable selection bias still ...
متن کاملEstimating Conditional Densities from Sparse Data for Statistical Language Modeling
The Maximum Likelihood Set (MLS) was recently introduced in [1] as an effective, parameter-free technique for estimating a probability mass function (pmf) from sparse data. The MLS contains all pmfs that assign merely a higher likelihood to the observed counts than to any other set of counts, for the same sample size. In this paper, the MLS is extended to the case of conditional density estimat...
متن کاملLearning Densities Conditional on Many Interacting Features
Learning a distribution conditional on a set of discrete-valued features is a commonly encountered task. This becomes more challenging with a high-dimensional feature set when there is the possibility of interaction between the features. In addition, many frequently applied techniques consider only prediction of the mean, but the complete conditional density is needed to answer more complex que...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2017
ISSN: 1935-7524
DOI: 10.1214/17-ejs1254